Markov chain Monte Carlo tests for designed experiments

نویسندگان

  • Satoshi Aoki
  • Akimichi Takemura
چکیده

We consider conditional exact tests of factor effects in designed experiments for discrete response variables. Similarly to the analysis of contingency tables, a Markov chain Monte Carlo method can be used for performing exact tests, when large-sample approximations are poor and the enumeration of the conditional sample space is infeasible. For designed experiments with a single observation for each run, we formulate log-linear or logistic models and consider a connected Markov chain over an appropriate sample space. In particular, we investigate fractional factorial designs with 2 runs, noting correspondences to the models for 2 contingency tables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Markov chain Monte Carlo tests for designed experiments

We consider conditional exact tests of factor effects in designed experiments for discrete response variables. Similarly to the analysis of contingency tables, a Markov chain Monte Carlo method can be used for performing exact tests, when large-sample approximations are poor and the enumeration of the conditional sample space is infeasible. For designed experiments with a single observation for...

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Markov basis for design of experiments with three-level factors

We consider Markov basis arising from fractional factorial designs with threelevel factors. Once we have a Markov basis, p values for various conditional tests are estimated by the Markov chain Monte Carlo procedure. For designed experiments with a single count observation for each run, we formulate a generalized linear model and consider a sample space with the same sufficient statistics to th...

متن کامل

Markov basis for design of experiments with three-level factors

We consider Markov basis arising from fractional factorial designs with threelevel factors. Once we have a Markov basis, p values for various conditional tests are estimated by the Markov chain Monte Carlo procedure. For designed experiments with a single count observation for each run, we formulate a generalized linear model and consider a sample space with the same sufficient statistics to th...

متن کامل

R-package FME : MCMC tests

This vignette tests the Markov chain Monte Carlo (MCMC) implementation of Rpackage FME (Soetaert and Petzoldt 2010). It includes the delayed rejection and adaptive Metropolis algorithm (Haario, Laine, Mira, and Saksman 2006)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008